

Current Transducer LTC 600-TF

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Electrical data

I _{PN} I _P R _M	Primary nominal r.m.s. current Primary current, measuring range @ 24 V Max overload not measurable Measuring resistance		500 0 ± 1 10 / 10 R _{M min}		A A «A/ms
	with ± 15 V	@ $\pm 500 A_{max}$	0	70	Ω
		@ ± 1200 A max	0	5	Ω
	with $\pm 24 \text{ V}$	@ ± 500 A _{max}	0	150	Ω
		@ ± 1500 A _{max}	0	20	Ω
I _{SN}	Secondary nominal r.m.s. current		100		m A
K _N	Conversion ratio		1:500	00	
v c	Supply voltage (± 5 %)		± 15	24	V
I _C	Current consumption		$<30(@\pm24V)+I_{S}$ m		· I _s m A
V _d	R.m.s. voltage for AC isolation test, 50 Hz, 1 mn		13.4 ¹⁾		kV
			1.5 ²⁾		kV
\mathbf{V}_{e}	R.m.s. voltage for partial discharge extinction		> 2.8		kV

Accuracy - Dynamic performance data

X _G	Overall accuracy @ I _{PN} , T _A = 25°C	$< \pm 0.7$	%
	@ I_{PN} , $T_{A} = -40^{\circ}C + 85^{\circ}C$	C < ± 1.6	%
$\mathbf{e}_{\!\scriptscriptstyle \! \!\scriptscriptstyle \! \!\scriptscriptstyle \! \! \!\scriptscriptstyle \! \!\scriptscriptstyle \! \!\!\!\!\!\!\!\!\!\!\!$	Linearity error	< 0.1	%
I _о	Offset current @ $I_p = 0$, $T_A = 25$ °C Thermal drift of I_0 - 40°C	Max ± 0.5 + 85°C ± 1	m A m A
t _r di/dt f	Response time ³⁾ @ 90 % of I _{PN} di/dt accurately followed Frequency bandwidth (- 1 dB)	< 1 > 100 DC 100	μs A/μs kHz

General data

$T_{_{A}}$	Ambient operating temperature	- 40 + 85	°C	
T _s	Ambient storage temperature	- 45 + 90	°C	
\mathbf{R}_{s}	Secondary coil resistance @ T _A = 85°C	44	Ω	
m	Mass	1300	g	
	Standards	EN 50155 (01.1	N 50155 (01.12.20)	

Notes: 1) Between primary and secondary + shield

2) Between secondary and shield

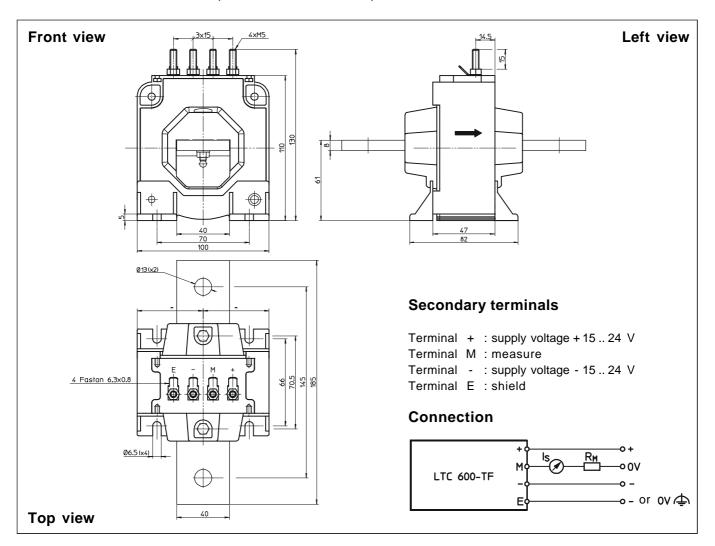
3) With a di/dt of 100 A/µs.

Features

- Closed loop (compensated) current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0
- · Mounting base delivered
- · Railway equipment.

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- · Current overload capability.


Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- · Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

040430/2

Dimensions LTC 600-TF (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

• General tolerance ± 1 mm

• Transducer fastening

By the primary bar 2 holes \varnothing 13 mm

2 x M12 steel screws

Recommended fastening torque 24.5 Nm or 18.07 Lb.-Ft.

Or by fastening feet

4 slots \varnothing 6.5 mm

4 x M6 steel screws

Recommended fastening torque 5 Nm or 3.69 Lb.-Ft. Connection of secondary M5 threaded studs

Recommended fastening torque 2.2 Nm or 1.62 Lb.-Ft.

Faston 6.3 x 0.8 mm

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.